Knowledge Base

Getting Started

Configuring NP-View Server

Getting Started

Once NP-View Server is installed, the application will start automatically. Note that NP-Live has been Rebranded to NP-View Server.  Several of the instructions still correctly refer to NP-Live as we migrate the installation services to the new product names.

If the Linux Administrator wishes to start and stop the application, two helper scripts have been included to aid in these tasks:

  • Stop : sudo /opt/np-live/stop_NP-Live.sh
  • Start : sudo /opt/np-live/start_NP-Live.sh

NP-View Docker IP Conflict

+
If NP-View Docker is using IP addresses that conflict with addresses used on the local area network, the IP addresses used by Docker can be changed as follows:

Create a docker network with the subnet you would like to use:
sudo docker network create --driver overlay --subnet x.x.x.x/x NP-Live_external

Navigate to the np-live install directory (default /opt/np-live):
cd /opt/np-live

Add the following config to local-settings.yml (tab indented to reflect table below):
networks:    
  NP-Live_external:  
    external: true

Replace all instances of the default network in docker-compose.yml to NP-Live_external:
sudo sed -i 's/- default$/- NP-Live_external/g' docker-compose.yml

Stop and start the app:
sudo sh ./stop_NP-live.sh && sudo sh ./start_NP-live.sh

#Note: docker commands (and the start/stop NP-live scripts) will require sudo unless you are the root user or your user is part of the docker group

Version mismatched between two compose files : 3.4 and 3.1

+
When starting NP-View Server, if this error is received, the version number in /opt/np-live/local-settings.yml needs to be at “version: ‘3.4’”. If not at version 3.4, please replace the contents of the local-settings.yml file with the code listed in the Setting the NP-Live Virtual Appliance Time Zone section and set your application time zone accordingly. This file is sticky and will remain after future upgrades. After the update, start the server using the above command.

Upon initial start, the Welcome screen shows the configuration wizard to guide the Administrator through the remaining configuration steps which include:

  1. Authentication
  2. Licensing
  3. Users

Configure Authentication

The following authentication options are available to configure in NP-View Server.

  • Active Directory / LDAP
  • Radius
  • Local

Active Directory or LDAP

For Active Directory or LDAP authentication we use LDAPv3 TLS over port 389.  If the communication returns an exception, we attempt unencrypted communication. We do not support LDAPS.  Before starting, note that setup requires a dedicated Credential Binding Account (LDAP Administrator). The Credentials Binding Account must be included in at least one of the system groups for NP-View Server to query and link the users.

An example of a properly configured LDAP screen on NP-View is below:

The setup page will allow for the definition of three system groups using a Distinguished Name.  A Distinguished Name (often referred to as a DN or FDN) is a string that uniquely identifies an entry in the Directory Information Tree. The format of a DN is: CN=groupname,OU=grouptype,DC=subdomain,DC=example,DC=com.  Your domain needs to match the DC specified in your DN. For an example DN like above, the domain would be: ‘subdomain.example.com’.

For example:

ldap_group_admin = 'CN=NP-Live Admin, OU=Permissions, DC=ad, DC=np, DC=test'
ldap_group_write = 'CN=NP-Live WorkspaceAdmin, OU=Permissions, DC=ad, DC=np, DC=test'
ldap_group_read = 'CN=NP-Live Viewer, OU=Permissions, DC=ad, DC=np, DC=test'

group_translation = {'Administrator' : ldap_group_admin,
'WorkspaceAdmin' : ldap_group_write,
'Viewer' : ldap_group_read}

Reminder:   The three CN names must be unique or roles will be overlapped in NP-View resulting in features being disabled.

To find the DN on Windows, open a Windows command prompt on your Active Directory server and type the command: dsquery group -name "known group name".

Users assigned to NP-View must login once to get setup within the NP-View database for sharing and transferring of workspaces.  No users exist until after the first login.

Troubleshooting Active Directory Setup

If an error is returned when configuring Active Directory, the steps to troubleshoot are:

Step 1: From your Active Directory server, type the command below in a terminal after replacing the “CN=…” portion with the Distinguished Name of the group you’d like to check:

dsget group "CN=groupname,OU=grouptype,DC=subdomain,DC=example,DC=com" -members

Verify that the output shows the expected list of user(s) in that group. If it doesn’t, check your Active Directory group and user configuration.

Step 2: From your Active Directory server, type the command below in a terminal after replacing the “CN=…” portion with the Distinguished Name of the group you’d like to check, and also replacing USERNAME with your actual username:

dsquery * -Filter "(&(objectClass=user)(memberOf:1.2.840.113556.1.4.1941:=CN=groupname,OU=grouptype,DC=subdomain,DC=example,DC=com)(sAMAccountName=USERNAME))"

If the output is empty, verify that your user in Active Directory has the attribute sAMAccountName set. If not, set it and try the command again. Verify also that the sAMAccountName value matches your AD username value. You can also try to enter the username in the NP-View Active Directory configuration form with the format USERNAME@DOMAIN.

If the output shows the expected list of groups for that user, but NP-View still generates an error, then contact the NP support team.

Radius

Radius authentication requires your server address and secret. Once input, the user can test their connection using their personal login credentials for verification.  Note that for Radius authentication, all users are assigned to the Administrator group.

Welcome: How would you like to authenticate users

Local Authentication

NP-View Server provides an internal mechanism for the administration of users.  During setup, the screen will require the user to setup the Administration account by inputting a user ID and password.  This account will be assigned to the Administrator role and will have access to all system features. An example of a properly configured Local Auth screen on NP-View is below:

User Management

NP-View Server provides a User Management function for users assigned to the the Administrator role. It can be accessed in the user menu at the top right of the screen either on the workspace page or from within a workspace.

User Management – Active Directory or LDAP

Clicking User Management will open a window that shows the LDAP setup information. The left half of the screen allows the user to change the NP-View LDAP settings.  LDAP Auth credentials are required to update the information.  The optional email field override is used as the default email address for the Notification Manager if no email address is provided as part of the LDAP credentials.

The right half of the user management screen allows for the testing of each LDAP user and will retrieve their LDAP settings for review.

User Management – Local Authentication

Clicking User Management will open a window that shows the user related information associated with this account, their account details, and their account permissions.

From this window Administrators can edit (pencil icon), delete (x icon) or add user accounts (create new user button).

A user’s ID should be the user’s email address (this will be used for notifications) and an administrator-defined password.  Each user will need to be assigned to a role which will provide the user with system wide access.

  1. Administrator – Has access to all users, workspace and system administration functions including managing users and license functions.
  2. WorkspaceAdmin – Has access to all workspace administration functions.
  3. Viewer – Has read only access to the system.

Reset Authentication

The Administrator can also reset the authentication method entirely by selecting the “Reset authentication system” link. “Reset authentication” only resets the authentication and does not remove any workspaces or data.  Note that workspaces are assigned to user id’s.  If the authentication method (or user id format) is changed, the workspaces will no longer be available to users.  The administrator or workspace admin must utilize the transfer workspace function to assign the legacy workspace to the new user id’s.

Password Reset

  • Workspace Admin or Viewer user groups:  Contact your Administrator who can manually reset your password through the User Management function on the system menu (upper right corner).
  • Admins: connect through SSH to the NP-View server and remove the file db/auth_provider.cfg inside the NP-View application folder (by default: /opt/np-live).
  • Refresh the NP-View web page to show the Welcome screen and reconfigure the authentication.

License and Terms

The Administrator can Show, Upgrade or Renew their license. Licensing terms and legal disclosures are available from the system menu where user management is found.

Configure License Key

After the authentication, the Welcome screen will guide the Administrator through reviewing the EULA and adding the license key. The license key should have been sent to you by email and also posted on the Network Perception portal. If you haven’t received a key, please send a request to support@network-perception.com. Renewed or upgraded license keys can only be installed from the home screen (not from within a workspace) by members of the Administrator group.

Additional Configuration Features

Configure Automatic Updates

NP-View Server can automatically download new releases and update itself if you select “Automatically check for updates”.  Alternatively, you can select “Update NP-View” from the upper right menu or update offline using the following steps:

  1. Download the latest release from the Network Perception portal.
  2. Copy the release file to the NP-View Server using SCP or WinSCP
  3. Connect to the NP-View Server shell using SSH and execute the release file with the command sudo sh NP-View_server_installer.sh

Configure Shutdown and Startup Options

To speed performance on startup, NP-View terminates background processes that are running when the system is gracefully shutdown and clears out all tasks and jobs.  If any processes remain upon startup, they are also terminated. To change the configuration,

  • stop the NP-View Server application.
  • in the docker-compose.yml file for the manager change cancelTasksStartup=True to cancelTasksStartup=False
  • in the docker-compose.yml file for the manager change clearRqStartup=True to clearRqStartup=False Note that the previous setting must also be set to True for this operation to work.
  • start the NP-View Server application.

Configure User Timeout

The system can be configured automatically time out a user after a period of idle days.  The default is set to 30 days. To change the configuration,

  • stop the NP-View Server application.
  • in the docker-compose.yml file for the webserver\environment service, change sessionLengthDays=30 to any positive floating point number representing elapsed days. For Example:
    • 0.5 = 12 hrs
    • 1.5 = 36 hours
    • 30 = 720 hrs.
    • If set to 0, user timeout will default to 30 minutes.
  • start the NP-View Server application.

Timeout for connectors is 1 day and cannot be changed. Also, the timeout value is not static and will be overwritten by the next software update. Prior to restarting after an update, the timeout needs to be reset to the value of choice.

Configure Devices within a Custom View

The system can be configured to allow for more devices within a custom view.  The default is set to 25 devices. To change the configuration:

  • stop the NP-View Server application.
  • in the docker-compose.yml file for the
    • services : manager : environment, change devCountLimit=25 to a positive integer.
    • services : bgmanager : environment, change devCountLimit=25 to a positive integer.
    • services : webserver : environment, change devCountLimit=25 to a positive integer.
  • start the NP-View Server application.

Note: The limit is not static and will be overwritten by the next software update. Prior to restarting after an update, the limit needs to be reset to the value of choice. Note: NP has only tested the system to the default limit. Raising the limit is at the user’s risk as unintended consequences including data loss and the system exhausting system resources may occur.

Configure A Static IP Address on your Linux Server

To set a static IP address for your NP-View Server, follow the instructions in this document.

Updating NP-View Server

This section describes how to update the NP-View Server application and the underlying components if the OVF was used for the initial installation.

Updating the NP-View Server Application

To update an existing NP-View Application, the steps are:

  1. Download the latest release Linux Installer Release (not the .OVF) from the Dragos Portal and copy it onto your NP-view server using SCP (or WinSCP from a Windows client)
  2. Login onto the NP-View server using SSH (or Putty from a Windows client)
  3. Get root permissions using the command: sudo -i
  4. Prior to installing the new version, it is recommended to make a backup of your database (see below)
  5. Execute the new NP-View release file using the command: sh NP-View_installer.sh  (where NP-View_installer.sh is the name of the new release file downloaded in step 1).
  6. Follow the guided steps of the installer, which will automatically start NP-View once the update is complete.
  7. Connect to the user interface of NP-View using your web browser and check in the bottom-left corner of the home page that the version number matches the new release

Updating the NP-View Application to version 5 and above

Prerequisites

  • Please update your current version of NP-View to version 4.3.5. Both Server and Desktop must be on this version before starting your upgrade.

For NP-View Server:

  • Verify there is sufficient disk space for the upgrade (3x size of Redis db).
  • If not follow log cleanup procedure listed in KB (~250MB possible).
  • If still insufficient space, disk space will need to be added before upgrade.
  • Verify all users are logged out of the system to not lose data during update.

Back-Up NP-View database

NP-View Desktop

  1. Copy the 4.3.5 database folder to a safe location. This will allow you to keep a back up 4.3.5 in the case you would want to revert back to 4.3.5some text
    • C:\Users\<name>\AppData\Roaming\NP-View\db
  2. Download NP-View from the portal and install.
  3. Starting the application may take longer than usual as a one-time database maintenance operation is being performed.

NP-View Server

Option 1:

  1. SSH as the root user to Terminal of NP-View server
    • ssh root@<ip-of-guest-os>
    • If needed sudo -i or sudo su will give you admin privileges once you are logged in.
  2. Move to the NP-View (np-live) app directory
    • cd /opt/np-live
  3. Stop NP-View
    • sh ./stop_NP-Live.sh
  4. The db directory contains all of the NP-View data. Create a tarball of the directory
    • tar -czf np-view-v4.3.5-db-backup.tar.gz db
  5. Move the file to a safe location.
    • Note: This file will allow you to revert back to 4.3.5.

Option 2 (This option is only available if your server is a VM):

  • Your server admin can take a snapshot image of the server as a restore instance. This tends to be easier and quicker for most of the customers that we have worked with.

Once you have a back up and have updated to 4.3.5, please download version 5+ and follow the instructions listed in the above section "Updating the NP-View Server Application".

NP-View Server Migration

Prerequisites

  • Follow the instructions above to update the NP-View CentOS server to the latest NP-View version.
  • Create a VM using the latest version of the NP-View Server OVF.
  • Both Servers need to be running to perform the migration.
  • Users should be logged out of NP-View and close any active session before restoring.

CentOS Migration to Ubuntu for NP-View Server

  1. Use backup and restore script.
    • sudo -i (This should take you to the root folder)
      • Enter credentials if prompted.
    • To run shell script: /opt/NP-Live/NP-View_backupand_restore.sh
      • There will be 3 options when using the script.
        • Backup
        • Restore
        • Exit
    • The script will check disk space when creating the backup.
    • The script will notify you if the storage is full and stop running.
  2. Move the CentOS tar file to the Ubuntu server’s root directory.
    • sudo -i (This should take you to the root folder)
    • Enter credentials if prompted.
    • To run shell script: /opt/NP-Live/NP-View_backupand_restore.sh
      • Select restore
      • The script gives a final warning before running.
      • The script checks if the docker containers are running.
  3. Once the script is completed it will notify you.
    • Connect to the web interface and verify data is transferred.
    • If you are unable to connect to the web interface restart NP-View service once the upgrade is complete.

Get Version API call

To check the version update your server URL to the following

https://<np-view_server_address>/version

Backing up the NP-View Server Database Manually

  1. Stop the NP-View Server (you can use the script /opt/np-live/stop_nplive.sh)
  2. From the NP-View Server folder (by default: /opt/np-live/, run the command: tar -zcf db_backup_$(date '+%Y_%m_%d').tgz db (this command may take few minutes to complete)
  3. Run the new release installer, which will update the containers and then launch NP-View Server

Updating Linux Ubuntu and Docker

(Version 5 and up installation with the OVF)

We will be providing update packages for Ubuntu and Docker. Please go to the following page for more information:

https://www.network-perception.com/kb/ubuntu-and-docker-update-packages

Updating Linux CentOS Ubuntu and Docker

CentOS is now EOL as of June 30, 2024. We highly recommend customers to transition to Ubuntu.

If the OVF was used for the initial installation, that package included the CentOS 7 operating system and Docker. These applications must be updated separately from the NP-View Server Application using the below instructions. The instructions cover NP-View Servers that have internet access and those that do not have internet access.

Updating when the NP-View server has internet access:

– stop NP-View
cd /opt/np-live/
./stop_NP-Live.sh

– run all updates
yum update -y

– reboot server
reboot

Updating when the NP-View server does not have internet access:

If NP-View server is installed in an environment that does not have internet access, a separate Centos 7 server with Docker that has internet access is required to create the update package. All commands below are case sensitive.

Network-Perception uses this mirror for CentOS updates and this mirror for Docker updates

Centos 7 that is online:

– make sure you are root
sudo su -

– create packages directory
cd /root/
mkdir packages
cd packages

– download all packages
yum list installed | awk {'print $1; }' | tail -n +3 | xargs yumdownloader

– you should see docker included in the output list.

– compress archive (capital -C is important)
tar czf /root/packages.tar.gz *.rpm -C /root/packages/

– Copy packages.tar.gz to the offline server. The user can use the below command to scp:
scp packages.tar.gz root@ipAddress:/root/

Centos 7 that is offline running NP-View:

– make sure you are root
sudo su -
– stop NP-View
cd /opt/np-live/
./stop_NP-Live.sh

– create directory and extract the archive
cd /root/
mkdir packages/
mv packages.tar.gz packages/
cd packages/
tar -xf packages.tar.gz

– install all updates:
yum -y localinstall *.rpm

– reboot server
reboot

– now everything is up to date on the offline server.

If you get any docker swarm errors:

– make sure you are root
sudo su -

– leave and join swarm cluster
docker swarm leave --force && docker swarm init

Product Tutorials

1. Network Mapping

Network mapping provides the Networking Team (Network Engineer, Network Security) with capabilities that allow users to:

  • Visualize an accurate topology of the network architecture
  • Identify and label critical cyber assets and critical network zones
  • Easily review which devices are protecting which network zones

Visualize Topology

NP-View can be used to discover your network topology and the underlying control plane, including layer-2 and layer-3 configurations. Without leaving the topology map, you can review many aspects of the network’s design including Firewalls, Routers, Switches, Gateways, Networks, VPNs, Hosts and more.

Critical Assets and Zones

Each asset can be tagged with categories and criticalities as well as grouped into zones making it easy to review which devices are protecting which network zones.

Details On-demand

Selecting a node in the topology map will interactively display an information panel with detailed data about that node.

2. Firewall Ruleset Review

Firewall ruleset review provides Network Engineers, Network Security, and Compliance Analysts with functionality for:

  • Easy review of firewall access rules and object groups using the Access Rules and Object Groups reports.
  • Automatic identification of configuration risks using the Risks and Warnings report.
  • Validating recent policy modifications as part of a configuration change review process using the Change Tracking report.

How to Review Access Rules

An independent review of firewall policies has to be periodically conducted to ensure that network access rules are correctly implemented and documented. It is important because lack of access rule review leads to unexpected network access vulnerabilities.

  • Frequency: each time firewall policies are changed, and at least once a quarter
  • How to do it:
    • Step 1: given a workspace populated with network device configurations, open the Access Rule table from the main menu (top left)
    • Step 2: leverage the “Column Search” feature or the “Compare” feature to show the rules in scope of your verification
      • For instance, filter the “Device” column to only show rules for a specific device, or filter the “Binding (ACL)” column to only show rules bound to a specific interface, or use the “Compare” feature to only show rules added or removed recently
    • Step 3: review values for the source, destination, service, binding, risk, and description of each rule in scope
      • The “Description” column captures comment, description, or justification from the device configuration
      • The “Risk” and “Risk Criticality” columns are populated by NP-View during the automated risk analysis
    • Step 4: to identify rules that are not justified, sort the table by “Description”. Empty values will be shown at the bottom.
    • Step 5: to document your review process, double click on the “Comment” or “Comment Status” cells to add your own comment. The comment status can be either “Verified” or “To Review” or “To Revise”
    • Step 6: to save an evidence of your review process, export the table to Excel using the export options in the top right corner of the table

Access Rules Table

The Access Rules report provides the users with complete details on each Access Rule with the ability to add justifications and actions.

Object Groups

The Object Groups report provides the users with complete details on each Object Group with the ability to add justifications and actions.

Risks and Warnings

As modifications are made to the network, the Network Perception default Policies and Requirements identify potential risks.  The Risks and Warnings report provides the users with a summary of the potential risks and their criticality with the ability to add actions and comments.

Change Tracking

As modifications are made to the network and the updated configuration files are imported, the changes are logged in the Change Tracking table.

tracking table
3. Segmentation Verification

Segmentation verification provides the Networking Team and Audit Team with capabilities that allows users to:

  • Assess correctness of network segmentation
  • Identify risky network connectivity paths
  • Understand exposure of vulnerable assets

Network Segmentation Accuracy

NP-View be used to verify the accuracy of your network segmentation.

The connectivity matrix which is available from the device info panel can be used to verify open ports between devices.

Inbound and outbound connections can be verified for each network using the highlight paths function.

Identifying Risky Connectivity Paths

Using industry best practices, Network Perception automatically identifies potential risks related to network configurations. Using the Network Perception  Connectivity Path analysis, the user can review each of the highlighted risks and make a judgment on action.

organization table

Exposure of Vulnerable Assets – Vulnerability Analytics

NP-View provides your security team with a single pane of glass for reviewing network vulnerability exposure. With the addition of scanner data or data from a vulnerability data service, vulnerabilities can be tracked across your network.

Topology Display of Vulnerabilities

When scanned data has been added to a workspace, and a topology view is built that also includes that scan data, nodes on the topology of that view will be marked with a shield indicating the presence of vulnerabilities.

These shields can be toggled on and off using the topology settings menu.

Device Panel Display of Vulnerabilities

Firewalls, Gateways, and Hosts may contain vulnerability and service information imported from scans. Clicking on any of these nodes in a View that contains vulnerability information, will display it in the info panel that opens over the main menu.

Clicking on the Vulnerabilities link will present a pop out with the vulnerability details.

Audit Assistance

Performing a regular review of your compliance metrics is important for your organization.  Performing the review manually is time consuming and tedious. Audit assistance provides the Compliance Team (Auditor, Compliance Officer, Compliance Analyst, and Consultants) with capabilities that allow users to:

  • Verify compliance with cybersecurity regulations and best practices through Policy Review.
  • Seamlessly store evidence for compliance review with Change Tracking.
  • Easily prepare compliance reports using the Audit Assistants listed below:

Workspace Report (Standard)

The Workspace Report assistant is available within each workspace and will generate a report for a specific view that includes detailed information about configuration files that were imported and parsed including:

  • Configuration assessment report including risk alerts
  • Ports and Interfaces
  • Access rules
  • Object groups
  • Path analysis

Industry Best Practice (Premium)

The Best Practice assistant requires a license to activate. This report is available within each workspace to generate a report for a specific view that includes the following topics:

  • Parser Warnings and potential misconfigurations
  • Unused Object Groups
  • Access Rules missing a justification
  • Unnamed nodes
  • NP Best Practice Policies on access rules and CiS Benchmarks that have identified potential risks
  • ACL’s with no explicit deny by default rule

NERC CIP Compliance (Premium)

The NERC CIP assistant requires a license to activate this function and guides the user through the steps required to create a report covering CIP-005 requirements. The NERC CIP audit assistant is only available within a NERC-CIP workspace and allows audit teams to classify BES cyber assets as High, Medium, and Low based on the standards. We have added a category for untrusted (Internet, Corp, etc.) to tag non BES assets. NP-View allows compliance teams to collect and report evidence related to the following requirements:

  • CIP-002 – BES Cyber System Categorization; impact rating and 15-month review
  • CIP-003 – Security Management Control; cyber security policy
  • CIP-005 – Electronic Security Perimeter; remote access management
  • CIP-007 – System Security Management; ports and services
  • CIP-010 – Change Management and Vulnerability; configuration change management, configuration monitoring, vulnerability assessment

A demo workspace for the NERC CIP audit assistant is included with the software.  To see the audit assistant in action, follow these steps:

  1. Click on the demo workspace to build the topology.
  2. Create a custom view by selecting all of the firewalls, right click, Create View from Selection and give it a name.
  3. Once the view is generated, select Manage Zones from the left manu and click on the Auto Generate Zones button.
    • Red zones represent your high criticality assets.
    • Orange zones represent your medium criticality assets.
    • Yellow zones represent your low criticality assets.
    • Gray zones represent your untrusted assets.
  4. On the left menu, select Summary Reports and the NERC-CIP Compliance Report
  5. Click through the wizard, the defaults will represent the selections suggested by the auto group function.
  6. Click Generate Report to view the report in a new tab.

Feature Documentation

Access Rules Report

This article will focus on the Access Rules Report.

NP-View uses reports to present network information related to the open workspace.  These reports are available to all users and can be accessed from the main menu. For more information visit the Workspace Reports Overview article.

Access Rules – Defined

The Access Rules Report can be accessed in two ways. Each way presents a different filtered data set.

  1. From the main menu, the table will populate the table with all rules for all devices in the workspace.
  2. From the topology, when clicking a Firewall/ Router/ Switch – its info panel will open – and the user can select Access Rules from the Data for this Device section. Only the rules for the selected device will be displayed in this case.

*main menu

       *info panel

What Data is Present?

The list below the image details the data types available in the Access Rules Report.

Access rules column details

+
  • Action: (RULE_ACTION) Permit, Allow or Deny.
  • Application: (RULE_APPLICATION) Filtered application name associated with the rule (only for next-gen firewall).
  • Bindings (ACL): (RULE_ACL) Name of the access list under which the rule is defined. This is a normalized zone representation of [src zone]:[dst zone] or interfaces if zones are not used [src binding]:[dst binding]
  • Change Status: used in comparison mode to reflect added, unchanged and removed rules.
  • Comment (Author, Date Status): User entered comments (or justification) and associated status (verified, to review, to revise).
  • Description: (RULE_DESCRIPTION) Remarks from configs associated with rules. Typically found in Cisco and SonicWall devices.
  • Destination: (RULE_DESTINATION) Object group destination for the rule.
  • Device: (RULE_DEVICE) Device host name as defined in a configuration file.
  • Dst Binding: (RULE_DST_BINDING) Outbound interface to which the rule is bound.
  • Dst Criticality: (RULE_DST_CRIT) Criticality of the object group destination (or the parent zone containing the object group destination) as defined by the user on the topology map.
  • Enabled: (RULE_ENABLED) Rule is enabled (True / False). The enabled column gets its value from the firewall config. The parser then decides if the rule is supported (True) or not (False). Disabled rules (value from firewall config) are displayed in the table as False and may have a green or gray text color.
  • First Hit: Timestamp of when rule was first accessed (Palo Alto NGFW Only).
  • Hit Count: (RULE_ACL_HITS) Number of times the ACL was accessed (Palo Alto NGFW Only).
  • Hit Updated: Timestamp of last hits import. (Palo Alto NGFW Only).
  • First Hit: Timestamp of when rule was last accessed (Palo Alto NGFW Only).
  • Line #: Line number(s) in the configuration text file where the rule can be found.
  • Object ID: Value for linking rules to comments. This column must be displayed when exporting the rule table for enrichment and reimport.
  • Risk: (RULE_RISK) Highest risk text for associated Risk Criticality.
  • Risk Criticality: (RULE_RISK_CRIT) Highest criticality assigned by the triggered risk rule.
  • Rule: (RULE_NAME) Name of the rule found in the configuration. If the rule doesn’t have a name (e.g., Cisco devices), the value is populated by NP-View as RULE_X where X is the rule index.
  • Rule Tag: Palo Alto Only – rule tags from firewall.
  • Rule UUID: Palo Alto Only – rule UUID from firewall.
  • Service: (RULE_SERVICE) Object group service(s) associated with the rule. Alternatively, the field may be represented in a protocol/port-x to port-y format. For example, TCP/any to 53 (meaning TCP protocol, any to port 53), IP/any to 50 (meaning protocol 50). For ICMP we store the ICMP types in those fields. For example: “any to 11” or “any to 3” represent Type 3 — Destination Unreachable, Type 11 — Time Exceeded.
  • Source: (RULE_SOURCE) Object group source for the rule.
  • Src Binding: (RULE_SRC_BINDING) Inbound interface to which the rule is bound.
  • Src Criticality: (RULE_SRC_CRIT) Criticality of the object group source (or the parent zone containing the object group source) as defined by the user on the topology map.
  • Type: (RULE_TYPE) Type of rule (regular or VPN).
  • User: (RULE_USER) Filtered user name associated with the rule.

SRC and DST Criticality Calculations

+

Note that this feature was removed from v5.0 and up due to performance issues. It may return in the future.

The source and destination criticalities are calculated based on the higher of the criticalities assigned to the device, network, and zone (aka. binding) that the device is in.

  • if device A is in network N1 and bound to zone Z1 and A is Low, N1 is Medium, and Z1 is High, then the criticality of A will be High (highest criticality based on zone)
  • if A is Medium, N1 is Low, and Z1 is Low, then the criticality of A will be Medium (highest criticality based on device)
  • if A is Low, N1 is High, and Z1 is Medium, then the criticality of A will be High (highest criticality based on network)

Table Actions

There are a number of actions that can be taken in the Access Rules report, some are specific to Access Rules, others are universal to all Reports.

  1. Cells with more data then can be shown within the width of the column will display a + icon, which will show the additional data when clicked.
  2. The source, destination and service columns will show related object groups and object data within the + popup.
  3. Columns can be displayed or hidden using the hamburger menu in the upper right corner of the report.
  4. Changes to the menu are automatically saved.
  5. Additionally, the table can be exported as displayed, with comment history or with object groups.
  6. Only visible columns will be displayed.
  7. Columns can be sorted, rearranged or resized and changes will be automatically saved.
  8. Column filters can be displayed.
  9. Filters applied to the table or column will automatically be saved.
  10. Filters can be reset from the hamburger menu.

*the Access Rules Report Menu

Comments

+

NP-View provides a simple and easy way for users to add comments and other metadata to rows in Access Rules, and to track the historical lineage of these comments in a workspace. Comments can be added, or viewed, for integrity purposes they cannot be edited or deleted.

Adding a Comment: Comments can be added to a row by double-clicking on the cell in the column “Comment”.  Comment text and status can be added and then saved with the save button. Once the comment is saved, the author and time stamp are automatically inserted.

*applying comment


*applying comment – closeup


Comment History: Additional comments can be added to a row to begin creating a lineage or history of comments. This history will be automatically available when more than one comment exists on a row and can be expanded by clicking the blue clock icon on the leftmost column of the table. If there is no history the icon will be disabled.

When viewing history, changes between lines are highlighted in blue.

Example: If Comment 1 is: “rule comment 1” – ‘verified’ and Comment 2 is “rule comment 1a” – ‘to revise’ the status cell would be highlighted because there was a change – the comment text would not be highlighted if the text remained the same.

*Viewing comment history

Access Rules Hash

Access Rules are uniquely tagged (Object ID) within NP-View for linkage to comments and risks.

Access Rules Hash

+

Access rules are uniquely tagged (Object ID) within NP-View for linkage to comments and risks. The tag (hash) is calculated based on a hex converted combination of the following data fields. Available data varies based on manufacturer so, some fields may not apply to specific manufacturers. Most of the fields are defined above. For the fields unique to the hash, they are documented below.

If any of the data in these fields changes, the tag will change and previously linked comments and risks will no longer be associated with this rule.

Universal Variables:

  • ‘Binding (ACL)’ (Source binding : Destination binding)
  • ‘Destination’ (group contents excluding group names*)
  • ‘Service’ (group contents excluding group names)
  • ‘Source’ (group contents excluding group names)
  • ‘Application’ (group contents excluding group names*)

Vendor-specific Variables:

  • ‘Action’
  • ‘direction’ – is used to set some rules to isolate guests from LAN so that rules in the VLAN section of the firewall be set. Each specific network is going to have a set of rules. Depending on the rules created, each traffic will be labeled in, or out, or both.
  • ‘Enabled’
  • ‘scope’ – is for the traffic zones used in their networks. Rules can be created based on the parameters of interzone, intrazone, and universal.
  • ‘Type’

*If the group name changes but the contents stay the same, the object_id will not change.

Additional Features

  • The Compare button invokes a time series comparison function for the report.   Additional details on this function can be found here.
  • Comments can be imported from an Excel file.  Additional details on this function can be found here.
  • Conditional formatting can be applied to this table report.  Additional details on this function can be found here.

Comparison Report

+

Access Rules and Object Groups have a Compare function to show historical differences in data that has been added or removed. The function can be engaged by clicking the “Compare” button located at the top of the page. This function is used to display changes over a period of days.

The user can select a time frame (7, 30, 90 or 356 days or a custom date range). The user can select one or more devices to include in the report and then show the history over the range. Once the parameters are selected, the “Show Comparison” button should be selected.

The comparison function will display all changes (Rule Adds, Rule Removal and Unchanged Rules) for the selected days. The data will be displayed using the column format of the selected table. The user can filter on added, removed or unchanged rules by clicking the jelly bean. Added rules will be highlighted in green, removed rules will be highlighted in red and unchanged rules will be highlighted in light blue.

Clicking the “Compare” button will revert to the normal table but will not clear the selections.

Clicking the “Reset” button will clear the selections and reset the table.

Asset Inventory Report

This article will focus on the Asset Inventory Report.

NP-View uses reports to present network information related to the open workspace.  These reports are available to all users and can be accessed from the main menu. For more information visit the Workspace Reports Overview article.

Asset Inventory

This report provides a summary of all assets loaded into the workspace including: Firewalls, Routers, Switches, Gateways and Hosts.

Asset Inventory Columns

+
  • Alias: List of alternative names identified in configuration(s) or auxiliary data, separated by “:”.
  • Annotation: Comments addes using the Topology annotation feature. Each field contains a complete history of added annotation text.
  • Annotation Author: User Id of the annotation creator.
  • Annotation Date: Date the annotation was created.
  • Annotation Type: Tag added to the annotation.
  • Category: User assigned category from the topology map.
  • Created At: Time and date when the device was added to the workspace.
  • Created By: Files used to create the device or host.
  • Criticality: User assigned criticality from the topology map.
  • Description: Description from the configuration file if available.
  • IP address: IP address of the device, gateway, or host.
  • Label: Initially mirroring the Name field but can be changed by the user on the topology map and represented in this field.
  • MAC Address: The MAC addresses assigned to the devices, typically from auxiliary data.
  • Name: Device host name as defined in a configuration file.
  • OS: Host operating system derived from third-party data files.
  • Object ID: Internal asset ID used for table display purposes.
  • Security Zone: The security zone assigned from the configuration file.
  • Services: Host services derived from third-party data files.
  • Type: Device type; firewall, router, switch, gateway, host, unmapped host.
  • Updated At: Time and date when the device was last updated (configuration change).
  • Updated By: Type of file used to update the device.
  • Verified: Applied by gthe asset verification function, True, False or NA.
  • Zone: The zone assigned from the topology map.

Unmapped – What is it?

For some devices there may be a large number of hosts defined in the Asset Inventory but less shown on the Topology Map. These “missing hosts” are not actually missing on the map, they are hidden in a Gateway node titled ‘Unmapped’.

If an IP address is displayed as 0.0.0.0 this device has an IP address assigned by DHCP and while the device was detected, an IP address could not be extracted, and it would be said to be an Unmapped Host. Unmapped hosts have enough information for identification but not for mapping purposes on the topology map.  These ‘invisible’ hosts are located behind the Unmapped, or other, gateways and can be seen in a given gateway’s peer list.

Background Tasks

NP-View uses reports to present network information related to the open workspace.  These reports are available to all users and can be accessed from the main menu.

This article is focused on the Background Tasks Table.

Background Tasks

This table displays the active and completed processes both for the current workspace, and for all workspaces. When in a workspace you have the ability to filter and view the active processes for the current workspace and to clear or cancel completed or active processes for the current workspace.

Access: Background Tasks can be accessed in three ways.

  1. From the main menu
  2. Using the hotkey ‘T’
  3. Clicking on the active spinner on the topology map

*main menu

     *active background tasks spinner

Overview

The Background Tasks table shows the status of each task spawned by a data import, merge, analysis, or by run policies.

  • Parsing tasks indicate the imported file is being normalized and hosts inferred.
  • Merge tasks combine the normalized data into the topology map.
  • Analysis tasks define all of the paths and open ports.
  • Policies review the active requirements to identify potential risks for review.

An example of the background tasks table is in the image below.

The report contains the following data and has the following functionality:

Report Data:

  • Task name
  • Progress
  • Workspace where the task is running
  • User who owns the task
  • The time it started or ended

Report Functions:

  • The check box allows the user to filter on the tasks pertinent to the current workspace.
  • The X allows the user to cancel a task that may be running too long or be stuck for some reason.
  • The user can also cancel all tasks within a workspace using the “Cancel All for this Workspace” button
Change Tracking Report

Change Tracking

Overview

  • The Change Tracking Report logs modifications that are made to the network and the updated configuration files that are imported.
  • It can be accessed from the main menu
  • For every change, the timestamp, action, device, and description are recorded.
  • Changes are displayed and can be filtered by calendar day.
  • At the top of the table is a drop down that allows the user to select which day to review.
    • The default is the current day.

Functionality

The Change Tracking Report can be:

  • searched
  • sorted by any column
  • switched to a list view
  • exported
  • and configured with alternate columns if required

These functions are available in the upper right corner of the table.

Change Types

The types of change actions that are logged are:

  1. File import – for each file uploaded, of the following statuses will be displayed:
    • successful import” – file imported successfully”
    • ignored file: <filename> – unknown file type, ignored
    • failed import” – file failed to import, review help center for reason
  2. Topology map – for each file uploaded, of the following statuses will be displayed for the topology map
    • device path information” – triggered if the connectivity matrix changes
      • Paths can be added or removed
      • Assets refers to destination IP addresses
      • Services refers to the unique ports (or any) associated with the imported device
      • Details on the above can be viewed in the Connectivity paths
    • topology updated” – indicates the topology map has been successfully updated
    • topology failure” – indicates the topology map has failed, review help center for reason
  3. Connectivity Paths – for each file uploaded, of the following statuses will be displayed for the workspace
    • workspace analysis updated” – all other tables have been successfully updated

Supported Devices & Data

Firewalls, Routers, Switches

The following table is a comprehensive list of supported devices. The instructions provided in the table can be used to manually extract data from the device for import. While we do our best to support the below devices, it is impossible for us to test the parsers with every possible device configuration combination. If errors occur during device import, Network Perception is committed to working with our customers to resolve their specific parsing issues.

Note that Network Perceptions device support policy follows that of the manufacturer.  When a manufacturer ends support for a product, so does Network Perception.  End of support devices are not removed from NP-View but will not be upgraded if issues arise.

Supported Devices with Vendor Partnership

The devices in this list are actively tested in our lab to support the most current versions of the manufacturer software. Network Perception has an active partnership with these vendors for software and support.

Vendor Type/Model/OS Configuration files needed
Check Point R81 / R81.10 / R81.20 including Multi-Domain Security and Virtual Router support (VRF) We support the database loading using the NP Check Point R80 Exporter (PDF documentation, video). Zip File Shasum: 5d22b182d773c020fd2a58838498b8be8221468e Exporter Tool Shasum: cc3131da37362da1291fa4a77cd8496fcb010596
Cisco
  • ASA Firewall (9.8 and up) including multi-context and Virtual Router Forwarding (VRF).
  • FTD Firewall (7.1.x, 7.2.x)
  • IOS Switch (15.7 and up) including Virtual Router Forwarding (VRF).
  • ISR (IOS-XE 17.6.x and up)
  • We do not support Application Centric Infrastructure (ACI) or NX-OS
For a Cisco IOS device, the sequence would be:
  • enable (to log into enable mode)
  • terminal length 0 (it eliminates the message between screens)
  • show running-config
For a Cisco ASA, the sequence would be:
  • enable
  • terminal pager 0
  • show running-config
For FTD, see additional instructions below
Fortinet FortiGate Firewall, FortiSwitch (FortiOS 7.0.x, 7.2.x) To get a config capture from the CLI using Putty (or some similar SSH) client, here is the process:
  • Turn on logging of the CLI session to a file
  • In the CLI of the FortiGate, issue these commands in sequence:
  • config system console
  • set output standard
  • end
  • show full-configuration
  • Turn off logging
Palo Alto Next Gen Firewall (PanOS 10.x, 11.x) including multiple virtual firewalls (vsys) and virtual routers (vrf). We do not support SD-WAN See additional instructions below

Supported Devices with no Vendor Partnership

The devices in this list are actively tested in our lab to support the most current versions of the manufacturer software.

Vendor Type/Model/OS Configuration files needed
Dell – Edge Gateway Ubuntu Core (IP Tables) see additional instructions below
Dell – PowerSwitch OS10 show running-configuration
Dell – SonicWall SonicOS (5.9.x, 6.5.x) “From GUI, Go to Export Settings, then Export (default file name: sonicwall.exp)” see additional instructions below
FS Switch (FSOS S5800 Series; Version 7.4) show running-config Note that FS configs are Cisco like and not tagged specifically as FS. We do our best to identify the device type but may display the device as Cisco in NP-View
Nvidia Mellanox (Onyx OS) show running-config Note that Nvidia configs are Cisco like and not tagged specifically as Nvidia. We do our best to identify the device type but may display the device as Cisco in NP-View
pfSense Community Edition 2.7.2 Diagnostics > Backup & Restore > Download configuration as XML
Schweitzer Ethernet Security Gateway (SEL-3620) SEL Firmware: from “Diagnostics”, click on “Update Diagnostics” and copy the text OPNsense: from ‘System > Configuration > Backup’ export .XML backup file Note: IPTables from OPNsense are not supported in NP-View.
Siemens – RUGGEDCCOM ROX Firewall RX1000-RX5000 (2.x) admin > save-fullconfiguration. Choose format “cli” and indicate file name

Historical Devices

The devices in this list were developed based on customer provided configuration files.  We are no longer actively developing these parsers but they are supported for break/fix and require customers sanitized config files to assist with the debug of issues.

Vendor Type/Model/OS Configuration files needed
Dell PowerConnect Switch console#copy running-config startup-config (instructions)
Nokia Service Router (SR7755; TiMOS-C-12.0.Rx) admin# save ftp://test:test@192.168.x.xx/./1.cfg
↳Alcatel-Lucent Service Aggregation Router (SAR7705; TiMOS-B-8.0.R10) admin# save ftp://test:test@192.168.x.xx/./1.cfg
Berkeley Software Distribution (BSD) Firewall (Open, Free and Net; 3 series) ifconfig -a > hostname_interfaces.txt See additional instructions below
Extreme Switch (x400, x600; XOC 22.6) save configuration
Hirschmann Eagle One Firewall (One-05.3.02) copy config running-config nv [profile_name]
HP / Aruba ProCurve Switch (2600, 2800, 4100, 6108) show running-config
NetScreen Firewall (ISG, SSG) get config all
Linux BSD IP Tables Firewall iptables-save See additional instructions below
NETGEAR Smart managed Pro Switch (FS/GS-Series; 6.x) CLI: show running-config all Web UI: Maintenance > Download Configuration
Siemens ROS Switch (RSG2-300; 4.2) config.csv
↳Scalance X300-400 Switch cfgsave
Sophos Firewall (v16) Admin console: System > Backup & Firmware > Import Export
VMware NSX Firewall GET https://{nsxmgr-ip}/api/4.0/edges/ (XML format) Learn more about vCenter and VSX
WatchGuard Firewall (XTM 3300, XTM 850) Select Manage System > Import/Export Configuration

Additional Instructions

Collecting Data from the Device Console

+

Collecting configuration information from the device console can be an easy way to get the device data.

Following the below rules will help ensure success when importing the files into NP-View.

Note that not all data can be retrieved from the console. Please review the section for you specific device for additional instructions.

  1. Run the command from the console.
  2. Copy the text to a plain text editor. Do not use Word or any fancy text editor as it will inject special characters that we cannot read.
  3. Review the file and look for non text characters like percent encoded text or wingdings like characters. These will break the parser.
  4. Save the output of each command in a separate file and name it after the device so that NP-View can properly attribute the files. For example: firewall1_config.txt, firewall1_arp.txt, firewall1_route.txt
  5. For Palo Alto files, there are specific naming requirements, please see the Palo Alto section for additional information.
  6. Some config files contain very long strings. Line wrapping due to the window size of the terminal will break the parser. If using a terminal like Putty, please ensure the terminal is set to maximum width.
config system console
set output standard
end

Finally, if you encounter a parsing error when loading the files and want to upload the files to Network Perception using the portal, please sanitize all files at the same time so that we can keep the data synchroized across the files.

Berkeley Software Distribution (BSD)

+

BSD has three firewalls built into the base system: PF, IPFW, and IPFILTER, also known as IPF FreeBSD

  • Packet Filtering (PF): Rules located in file /etc/pf.conf
  • IP Firewall (IPFW): Default rules are found in /etc/rc.firewall. Custom firewall rules in any file provided through # sysrc firewall_script=”/etc/ipfw.rules”
  • IP Filter also known as IPF: cross-platform, open source firewall which has been ported to several operating systems, including FreeBSD, NetBSD, OpenBSD, and Solaris™. Name of the ruleset file given via command ipf -Fa -f /etc/ipf.rules

OpenBSD

NetBSD

BSD and similar systems (e.g., Linux) will use the same names for interfaces (eth1, eth2, em1, em2, carp1, carp2, etc.). The parser might be confused if the user imports interface files and packet filter configs from different systems at the same time resulting in a combined system instead of individual devices. To prevent this, the user should group all files by host, making sure to name the ifconfig file after the hostname (i.e. host1_interfaces.txt).

Free BSD Example

Below is an example of a 2 host FREE BSD system containing FW1, host1 and host2. The user should import the files in each section as a separate import. fw1 – first data set import (all available files imported together)

  • pf.conf (required file) (note, can be named differently, e.g., FW1.txt’)
  • obsd_fw1_interfaces.txt (required file) (note that the parser keys on the “_interfaces” string”. Text before “_interfaces” will be used to name the device. In tis example ‘obsd_fw1’)
  • hostname.carp1
  • hostname.carp2
  • hostname.hvm2
  • hostname.hvm3
  • hostname.hvm4
  • table1
  • table2

host1 – second data set import (all available files imported together)

  • pf.conf (required file) (note, can be named differently, e.g., host1.txt’)
  • host1_interfaces.txt (required file) (note that the parser keys on the “_interfaces” string”. Text before “_interfaces” will be used to name the device. In this example ‘host1’)
  • hostname.em1
  • hostname.carp1

host2 – third data set import (all available files imported together)

  • pf.conf (required file) (note, can be named differently, e.g., Host2.txt’)
  • host2_interfaces.txt (required file) (note that the parser keys on the “_interfaces” string”. Text before “_interfaces” will be used to name the device. In this example ‘host2’)
  • table1
  • table2

The only required files are the config file (can be named something other than pf.conf) and the ifconfig file. hostname files are optional (unless they contain description of interfaces not in the ifconfig file). Table files contain a list of IP addresses that can be manipulated without reloading the entire rule set. Table files are only needed if tables are used inside the config file. For example, table persist { 198.51.100.0/27, !198.51.100.5 }

Legacy Fortinet Support

+

Support for Fortinet through 6.2 ended September 2023. Please note that no upgrades to these parsers will be made.

Palo Alto Panorama & NGFW

+

Panorama

If Panorama is used to centrally manage policies, the access rules and object groups can be retrieved from these devices in XML format (we do not support the import of unstructured text files). If using the Panorama connector, the required files will automatically be downloaded:through 6.2 ended September 2023. Please note that no upgrades to these parsers will be made.

The Panorama file will only contain centrally managed access rules and object groups.

Locally defined access rules and object groups cannot be retrieved from Panorama and must be retrieved from each NGFW. Please follow the instructions below to export directly from the Next Gen FireWall using API.

Palo Alto Firewalls will ALWAYS have a V-sys even if one has not been configured it will default to vsys1.

The “mapping_config” file is required which can only be retrieved through the API using the “show devices connected” command.  The name of the file is “named_mapping_config.xml” where the named prefix needs to match the device name as shown in the UI when the running_config.xml is imported alone. All files should be imported at the same time. Please see instructions below:

The below links are to the Panorama documentation for the required commands with examples. The links provide you with commands to run directly in the Panorama CLI. The images we provided are for using Postman or web browser use.

Get API Key


Get Panorama and device bundle Configuration



Get device mapping config


Once both the “<panorama_server>_running_config.xml” and <panorama_server >_mapping_config.xml” are gathered, please import them together in NP-View.

Next Gen Firewall (NGFW)

If using the PanOS connector is used to download files, the required files will automatically be downloaded:

The configuration information from the NGFW may be contained in several .xml files, <device-name>_merged_config.xml and <device-name>.vsys(n)_pushed_policy.xml.  There can be one vsys file per virtual interface. The naming of these files is important for the parser to merge them during import.  All files from a single firewall must be imported at the same time and in .xml format (we do not support the import of unstructured text files).  If any of the files are missing, improperly named or formatted, an error message will state that ‘File parsed but ruleset and topology were empty, aborting’ meaning they could not be linked to the other associated files.

An example of properly named files is below:

  • Chicago-IL-100-FW1_merged_config.xml
  • Chicago-IL-100-FW1.vsys1_pushed_policy.xml
  • Chicago-IL-100-FW1.vsys2_pushed_policy.xml

NOTE: If the NGFW is an unmanaged/standalone Palo Alto device it will not have a pushed_policy file. In this situation, the configuration .xml file can be downloaded directly from the firewall and loaded into NP-View.  The file name need not be changed when loading the file from a standalone firewall.

To manually export configuration files from an unmanaged firewall:

If the NGFW is managed by a Panorama, the API will be required to secure the necessary files:

Get API Key



Get PANos Firewall full configuration



Get Managed Firewall configuration

Virtual Routers (vrf) – Experimental Support

Virtual router (vrf) is a software-based routing framework in Palo Alto NGFW that allows the host machine to perform as a typical hardware router over a local area network. NP-View has added the experimental capability to detect Virtual Routers from Palo Alto devices (NGFW or Panorama) and present them in the Connector or Manual Import device selection screens. Virtual Routers will be treated the same as physical routers and will require a device license.

This feature is disabled by default and must be enabled prior to importing configurations containing virtual routers.

To enable the feature the NP-View Server admin will need to make a change to a system variable.

  • Stop the NP-View Server application.
  • in the docker-compose.yml file, change the enableVirtualRouters=False to enableVirtualRouters=True in three places within the file.
  • start the NP-View Server application.

For Desktop

  • Close the NP-View application.
  • In the file C:\Users\<username >\AppData\Roaming\NP-View\config.ini add enableVirtualRouters=True
  • Restart the NP-View application

Once enabled, the user will be presented with the option to select virtual routers from the connector in the device selection or upon manual import.

Legacy Palo Alto PanOS Support

+

Support for Palo Alto PanOS prior to V9.1 are no longer supported. Please note that no upgrades to parsers will be made for unsupported devices.

Dell Edge Gateway

+

The Dell Edge Gateway runs Ubuntu Core OS. The gateway uses IP tables to configure the local firewall. NP-View uses the following 4 files extracted from the Ubuntu server to generate the topology. This device is not a firewall but more of an application running device. It does have some security features but we suspect it would be behind a real firewall. The following data is needed to import this device.

  • iptables_rules → to get a device created, containing interfaces and rules
  • hostname_interfaces → associated with config above
  • arp_table → to get external hosts (ip + mac)
  • active_connections → to get routes

This is not a simple device to get data from, the following process must be followed:

1. Capture the iptables Filter Rules

To capture the iptables filter rules (the firewall rules that are active on the system), you can use the following command:

Show Command:

sudo iptables -L -v -n

Description:

Lists the currently active iptables firewall rules (filter rules). Includes details about chains (INPUT, OUTPUT, FORWARD), protocols, sources, destinations, and ports.

Save Command:

sudo iptables-save > ~/iptables_rules.conf

This will save the firewall (filter) rules in a file called iptables_rules.conf in your home directory.

2. Capture the Network Interface List

To capture the list of network interfaces (with IPs, MAC addresses, etc.):

Show Command:

ip addr show

Description:

Displays the list of all network interfaces on the system. Includes details about interface names (eth1, eth2, etc.), IP addresses, MAC addresses, and other interface attributes.

Save Command:

ip addr show > ~/hostname_interfaces.txt

This will save the interface details in a file called hostname_interfaces.txt in your home directory.

3. Show ARP Table

Show Command:

ip neigh show

Description:

Displays the ARP table, showing which MAC addresses correspond to which IP addresses on the network.

Save Command:

ip neigh show > ~/arp_table.txt

4. View Routing Table

Command:

ip route show

Description:

Displays the current routing table, showing default gateways, specific routes, and the interfaces used to reach specific networks.

Save Command:

ip route show > ~/routing_table.txt

5. Loading files into NP-View

Once all of the files have been retrieved, they need to be loaded into NP-View together and without any other files so they are properly associated.

Legacy Check Point R80 Support

+

Support for Check Point R80 through R80.40 ended April of 2024. Please note that no upgrades to these parsers will be made.

Cisco FTD

+

NP-View supports Cisco FTD through the output of “show running-config”command. However, it is important to note that Cisco FTD includes network filtering policies documented outside of the running configuration. This section explains where to find those policies.

As of version 6.1, Cisco FTD includes a Prefilter Policy feature that serves three main purposes:

  • Match traffic based on both inner and outer headers
  • Provide early Access Control which allows a flow to bypass Snort engine completely
  • Work as a placeholder for Access Control Entries (ACEs) that are migrated from Adaptive Security Appliance (ASA) migration tool.

The feature has 2 primary use cases:

  • For use with Tunnel Rule Types
  • For bypassing the Snort engine

These prefilter rules are part of the FTD configuration and are displayed via the “show running-config” command on the FTD. They manifest in the NP-View Access Rule table as a Permit IP with:

  • Source = any
  • Destination = any
  • Service = IP/any to any

As a result, the NP-View Rule Policy engine flags these rules as a high risk alert.

In the operation of the FTD, if a packet meets the prefilter policy, it is then evaluated by a secondary set of rules in the Snort engine or applied directly to the tunnel. The Snort rules are not part of the output of the of the “show running-config” output from the FTD. These rules are established, maintained and viewed on the FMC (management server), but are not readily available via the FTD CLI interface.

In the context of an audit during which evidence around these prefilter rules is requested, we recommend documenting that these rules are a default configuration for the system and we also recommend generating a FMC PDF Policy report to explain the flows of traffic within the FTD configuration. For more information, please refer to the Cisco FTD Prefilter Policies documentation.

SonicWall

+

We support .exp files as the default SonicWall file format for v5.9 and v6.X of the SonicOS.

The main UI allows for export of the encoded .exp file as such:

To extract the file via command line, then the command to export is

export current-config sonicos ftp ftp://[USERNAME]:[PASSWORD]@[FTP IP/URL]/sonicwall.exp

Where the username/password/FTP IP or URL must be changed. The file “sonicwall.exp” will then be saved at the FTP location. As this file is encoded, there’s no way to echo or cat the data.

Requesting Support for New Devices

The above list of supported hardware has been lab and field tested.  Newer versions generally work unless their is a major platform or API upgrade.  Please contact support@network-perception.com if you wish to get more information on parsers, request support for a particular device or are interested on co-developing a solution.

Connectors

NP-View includes a utility to automatically retrieve network device configuration files on a schedule. The connector types supported in NP-View Server are below:

Configuration Managers

For retrieving config files from network management systems. For each connector, the user can select the devices to be uploaded for monitoring.

Manufacturer Type/Model Configuration Information Required Connection Type
Fortinet FortiManager (6.4.x, 7.0.x) Hostname or IP address plus login credentials HTTPS + optional SSL server verification
Palo Alto Panorama (10.x, 11.x) Hostname or IP address plus login credentials See device selection section below for additional information HTTPS
SolarWinds Network Configuration Manager (Orion Platform HF3, NCM HF1: 2020.2.6) Hostname or IP address plus login credentials HTTPS

Direct Device Connection

For retrieving config files directly from the network device.

Manufacturer Type/Model Configuration Information Required Connection Type
Check Point R81.x Hostname or IP address plus login credentials See device selection and service account sections below for additional information HTTPS + optional SSL server verification
Cisco Adaptive Security Appliance (ASA 9.19) Hostname or IP address plus login credentials, enabling password and optional context SSH
Cisco Internetwork Operating System (IOS 15.9) Hostname or IP address plus login credentials, enabling password and optional context SSH
Fortinet FortiGate (FortiOS 7.0, 7.2) Hostname or IP address plus login credentials Note: SCP should be enabled in the configuration (instructions) SSH
Palo Alto NGFW (PanOS 10.x, 11.x) Hostname or IP address plus login credentials HTTPS

Volume Shares

For retrieving config files that are uploaded to a common collection repository.

Platform Connection Configuration Information Required Connection Type
Windows SMB Share (Samba) Hostname or IP address, share name, device name and root folder path SMB/CIFS
Linux SSH Share Hostname or IP address and folder path. Optionally an include list and exclude list can be defined. SSH

Additional Connector Information

Service Account

+

The use of service accounts is a recommended best practice when connecting to devices through connectors. The service account can be read-only and must have API privileges. When entering credentials related to an Active Directory domain, it is recommended to enter the username using the format account@domain.xyz instead of domain.xyzaccount as the backslash can cause unexpected issues.

Checkpoint

+

For the connector to work CheckPoint devices, the API setting need to be enabled in the SmartConsole.  See the image below for settings and commands to restart the API.

Device Selection

+

CheckPoint and Palo Alto network management systems provide files with multiple devices. The connectors for these systems allow for the selection of individual devices to load into NP-View. The user can select the “Retrieve device list” button to be provides a selection list.

Collecting Layer 2 Data from Devices

+

Layer 2 data will automatically be downloaded by the connectors for Cisco ASA and Cisco IOS devices. If the data is manually collected, use the following commands and file naming conventions.

Cisco ASA
  1. show running-config → 'device_name'.'context_name'.txt
  2. show arp → 'device_name'_arp_table.'context_name'.txt
  3. show route → 'device_name'_route_table.'context_name'.txt
  4. show interface → 'device_name'.'context_name'.interface_table.txt
  5. show access-list → 'device_name'.'context_name'.access_list.txt

Cisco IOS
  1. show running-config → 'device_name'.txt
  2. show ip arp → 'device_name'_arp_table.txt
  3. show ip interface brief → 'device_name'_interface_table.txt

Once all of the files are collected, manually load the files from each device together and separately from other devices for proper file association.

Samba

+

Network Perception suggests the following when setting up the SMB connection.

  1. Create a read-only user in Active Directory or on the SMB server.
  2. Determine the available share (Get-SMBShare” in Windows PowerShell) or create a new one.
  3. Share the SMB folder containing the Configuration files with the read-only user. For example:
  1. If using the date folder and recursive search feature, clicking “See Current Date Folder” will retrieve most recent folder, in YYYYMMDD format, in the “Current Root Folder” f field. For example:

Optional fields:

  1. Path to Root Folder – Directory you want to be the root folder relative to your default SMB root folder.
  2. Recursive Search – Whether or not to search recursively starting at the connector’s root folder.
  3. Name Filter – Filters file/directory names based on given regex statements. Any file/directory that fully matches ANY given regex statement will be included in result.
  4. File Decryption Key – a PGP key can also be provided if the files retrieved have been encrypted.

If during the connector test, access is denied, the following settings should be verified and may need to be changed for the SMB to work as expected.

Running PowerShell as administrator

Input command Get-SmbServerConfiguration

Verify that EncryptData is set to false

If set to true, run command “Set-SmbServerConfiguration -EncryptData 0

Verify SmbServerHardeningLevel is set to 0

If not set to 0, run command “Set-SmbServerConfiguration -SmbServerNameHardeningLevel 0

Microsoft recommended default is off (0). More information about these settings can be found on the Microsoft website.

SSH and Samba for HA Groups

+

NP-View has the ability to handle HA Groups.

As a best practice, if using SSH shares, it is best to erase the entire folder and replace with the config files from the current active devices. It is also a best practice to name the HA devices similarly for comparison. For example:

Pittsburgh_FW1

Pottsbirgh_FW2

etc.

For Samba shares, a similar method should be followed.

Refer to the Samba section for details.

If you have a system for which you need a connector or if you encounter a technical issue, please contact support@network-perception.com.

Configuring Connectors (legacy)

In version 6.0, a new connector function was introduced. for new connector users, it is recommended to use the new connector function. The connector access has been moved from the +Import function to the system menu.

Connectors automate the secure retrieval of configuration files from firewalls, routers, switches, and network device configuration managers. NP-View Server can host one or more connectors that securely retrieves configuration files at the specified frequency. By default, connectors are accessible through HTTPS on port TCP/8443 of the NP-View server and is isolated for security purposes.

The first time an administrator accesses the connectors, they are required to define a Connector group name and a secure passphrase. The Connector group name will be used to create the encrypted connector file store. Connector information is encrypted at rest and in transit using a passphrase protected PGP key. Only the connector owners know the passphrase and the passphrase is never stored. Once initiated, connectors run in the background collecting network information.  If the NP-View server is restarted, the connector owner is required to re-authenticate and restart the connectors. Connector owners can create multiple connector groups and each will require their own login. Once created, the user can select from the list of available connectors when logging in.

The connector page contains five main options.

Add New Connector

The buttons from left to right are:

  • + Add New Connector
  • bulk start all connectors (see bulk start parameters below)
  • bulk stop all connectors
  • delete the connector (user must be logged into the connector group to delete)
  • exit the connector group.

Add Connector

To add a new connector, select “+Add New Connector”  button and a list of available connectors is presented. Connector options are: Cloud Providers, Configuration Managers,  Direct Devices and Volume Shares

Upon selecting the Connector type to add, the user is requested to fill in connection information. Connector information varies by vendor.  The connector configuration for a Palo Alto device is as follows:

The user must enter a Connector name (no spaces), host name, and credentials.  The user can then verify the credentials are correct with the “Test credentials” button.  The user can setup the polling cycle and provide the workspaces to deliver the resultant information.

Polling Cycles are:

  • On demand
  • Daily
  • Weekly
  • Bi-Weekly
  • Monthly

Configuration Management Systems

For Configuration Management Systems and file Shares, additional information may be required.  The user can retrieve a list of files from the device and filter the results.  To include specific files, put them in the include list field.  To exclude files, put them in the exclude list field.  If both lists are used, include list filter will be applied first and the exclude list filter to the results of the include list filter. If the share is PGP encrypted, a PGP Public key will be required.

Workspaces must be added to the connector for data to be transferred and displayed in the workspace.  If workspaces are added after a connector is setup, data will not be sent to the workspace until the next scheduled import and a configuration change is identified.  Creating workspaces before connectors facilitates faster visualization of data.

Connector Tile

Once the connector is added, a tile is added to the connectors home page.

Connector tiles are sorted by the characters in their names using standard Linux conventions:

  1. whitespace
  2. integer
  3. special char
  4. uppercase [A-Z]
  5. underscore (possibly other special chars)
  6. lowercase [a-z]

From the tile, the user can:

  • manually activate the connector for a one time data pull
  • run / pause the connector
  • edit the connector
  • copy the connector
  • delete the connector.

The tile banner will show in three colors:

  • red – connector failed
  • blue – connector scheduled to run
  • gray – connector paused

Click the start / pause button to restart a failed or paused connector, note that a connector may take several minutes to change the banner color.

Connector for Forescout

+

The Connector for Forescout 8.1 and later enables integration between CounterACT and NP-View such that network device configuration files managed by CounterACT can be automatically imported into NP-View and aggregated into specific workspaces. Currently, Cisco switches are supported through the Forescout Switch Plugin.

  • Download the Forescout Extended Module for NP-Vie from https://updates.forescout.com.
  • Start your Forescout Console and login into Enterprise Manager.
  • Then open “Options”, select “Modules”, and install the fpi.

To request additional support for this connector or to request support for other devices, please contact support@network-perception.com.

Connectors + Samba (SMB) Access Error

+

This error can be caused by two communication scenarios between Linux and Window. Either SMB encryption is enabled on the Server or SPN target name validation level is enabled (or both). To check which of these features is causing the issue, Run PowerShell on the Windows Server as administrator and run the following command:

Get-SmbServerConfiguration

If EncryptData = True, it can be disabled using:

Set-SmbServerConfiguration -EncryptData 0

If SmbServerNameHardeningLevel is set to any value other than the default of 0 run:

Set-SmbServerConfiguration -SmbServerNameHardeningLevel 0

to restore the default.

Connectors fails to initiate connection to outside devices

+

In some instances, the Linux distribution is preventing the connectors (Docker) from initiating connections to outside devices. The solution is to update the firewall settings on the Linux distribution using the following commands:

# firewall-cmd --zone=public --add-masquerade --permanent
# firewall-cmd --reload
# systemctl restart docker

Configuring Read-only Access to Cisco

+

The NP-View Connector for Cisco uses a read-only SSH connection to collect the output of the show running-config command. It is best practice to create a dedicated read-only user on your Cisco devices when configuring connectors. Here are the commands to only give the minimum permissions needed for this user:

conf t
aaa authorization command LOCAL
privilege show level 2 mode exec command running-config
privilege cmd level 2 mode exec command terminal
username $USERNAME password $PASSWORD priv 2
end

Bulks Start Parameters

+

To help balance the processing load of managing multiple connectors and improve user experience on the topology map, the bulk start function can be scheduled to off hours using system parameters. The docker-compose.yml file contains two parameters for the bulk system start function in the monitor: environment: section

  • connBulkStartTime=21:00:00 # defines the start time for the connectors, format is Hours:Minutes:Seconds, 24 hour clock.
  • connBulkStartSpread=00:15:00 # defines the connector start stagger, format is Hours:Minutes:Seconds

Deleting Connectors

+

Connectors can be deleted by entering the connector group name and passphrase to gain access to the connector. The connector can be deleted by selecting the trash can in the upper right corner.

If the passphrase is forgotten, the connector can be forcefully deleted by the Linux Admin by removing the connector file from the folder

/var/lib/docker/volumes/NP-Live_np-connect/_data.

Auxiliary Data

NP-View can import auxiliary data from third party systems to enrich and augment analysis.  The data files listed below are supported and can be manually imported using drag and drop or through a shared network drive connector. We recommend importing configuration files first or at the same time as the auxiliary data files or a system error may occur. If auxiliary data is input after configuration files are processed, the auxiliary data will need to be added to a new or existing custom view(s) to be displayed

Host Files

Hosts can be identified from multiple sources including configuration files, network scan files, ARP tables, and hostname files. Once network device configuration files have been imported, one can import additional files to add metadata to the workspace. A hostname file is a simple text file with two columns: IP address and hostname separate by a tab.

Aux Data Loading Example

Note: This example applies to the loading of any Aux data file but is specific to creating and loading a host file.

First, load a firewall into a workspace and create a custom view with the firewall.

Notice that four hosts are not named.  To fix this, create a host file, named hosts.txt, to enrich the information.

The host file will add a name tied to each of the hosts and also includes hosts not currently displayed.

Let's use
172.30.90.50 Alice
172.30.90.51 Bob
172.30.90.42 Wendy
172.30.91.80 Sam
172.30.91.81 Carl

Note: Make sure any hosts added to the file do not conflict with firewall interfaces or they will be merged into the firewall.

Save the host file, and import it into the workspace.

The Manage Views function displaying a user adding both devices and multiple Auxiliary data files to a single view.

Once processed, proceed to the “Manage Views” menu and select a new or existing view to add Auxiliary data to.

Below the Select Devices box, is the Auxiliary Data box.

Choose any of the Auxiliary Data files you've added previously. (This image is not reflective of the example but to illustrate that users may select several Aux files).

For our example a user would see a single file called hosts.txt that would contain the names we've added.

Once the the view is created the updated assets will be displayed on the topology and in the Asset Inventory (on the main menu).

The view, seen here regenerated. Note the new hostnames applied to the endpoints.

To see how the previous example can be used as a repeatable process let's update those names again, with corrections.

First, update the Host file again. In this scenario, we rename “Carl” to “Carly” and “Sam” to “Sammy”. The updated file is as follows:


172.30.90.50 Alice
172.30.90.51 Bob
172.30.90.42 Wendy
172.30.91.80 Sammy
172.30.91.81 Carly

Load the file into the workspace and the custom views where auxiliary data has been applied. This will update the workspace.


The workspace, updated a second time

Note: Host data can come from multiple sources, also hosts can appear and disappear from the network. Host data is treated as replacement data for adding and deleting hosts over time.

Note: If for some reason a device has multiple names retrieved from multiple different file types, the additional names will be displayed in the Alias column of the Asset Inventory.

Network and Vulnerability Scanner Files

The output from network and vulnerability scanners can be imported into a workspace to add CVE information, hosts, attributes, and port information to the topology map. We support version 1.0 <?xml version=”1.0″ ?> of the below scanners:

When exporting the report, it should be saved using the XML format to properly import into NP-View. The data extracted and imported depends on the scanner used and the data available on the network.  Below is a list of data NP-View attempts to import.

  • hostnames
  • addresses
  • interfaces
  • local interface IP’s
  • local interface names
  • mac
  • domains
  • parent
  • operating systems
  • vlan

Multi-Home Host Files

Multi-Home hosts are endpoints that have multiple network interfaces. If NP-View identifies hosts with multiple interfaces, the host will be duplicated on the topology with each IP address. For example, the host called 'dual-homed' can be seen three times on the map below.

The host named 'dual-homed' repeated 3 times on the map

To resolve this, a 'multi_home_host.txt' file can be manually generated and loaded into NP-View as auxiliary data.

The file must be named 'multi_home_host.txt' and be of the following format:

192.168.135.115 dual-homed

192.168.135.114 dual-homed

192.168.135.113 dual-homed

Where the first field is the IP address and the second field is the name of the host.

When importing the 'multi_home_host.txt' and adding it to a view, the hosts will be connected as follows:

The hosts named 'dual-homed' have been consolidated

Note: The file can be named as *_multi_home_host.txt -where- *_ is anything preceding multi_home_host.txt.

For example:

tuesday_multi_home_host.txt

web_server_multi_home_host.txt

the_big_kahuna_multi_home_host.txt

Address Resolution Protocol (ARP)

ARP files can be used to add hosts as well as MAC addresses for the hosts.  The following formats are supported:

Cisco

Use commashow arp to export the ARP table.  The file format will be as follows:

<hostname># show arp  

outside 10.0.0.100 d867.da11.00c1 2  

inside 192.168.1.10 000c.295b.5aa2 21  

inside 192.168.1.12 000c.2933.561c 36  

inside 192.168.1.14 000c.2ee0.2b81 97

Cisco ARP Example

Using the data set from the Hosts example, a simple ARP table has been created in the Cisco format.

Distribution# show arp    

inside 172.30.90.50 d867.da11.00c1 2    

inside 172.30.90.51 000c.295b.5aa2 21    

inside 172.30.90.42 000c.2933.561c 36    

inside 172.30.91.80 000c.2ee0.2b81 97  

inside 172.30.91.81 000c.2ecc.2b82 95

Distribution#

Loading this data into NP-View will add the MAC addresses to each host which is visible in Asset inventory.

Windows

Use arp -a > arp_table.txt to export the ARP table.  The file format will be:

Interface: 192.168.86.29 --- 0x6  

Internet Address      Physical Address      Type  

192.168.86.1          88-3d-24-76-49-f2     dynamic    

192.168.86.25         50-dc-e7-4b-13-40     dynamic    

192.168.86.31         1c-fe-2b-30-78-e5     dynamic    

192.168.86.33         8c-04-ba-8c-dc-4d     dynamic

Linux

Use arp -a > arp_table.txt to export the ARP table.  The file format will be:

? (172.18.0.3) at 02:42:ac:12:00:03 [ether] on br-d497989bc64d

? (192.168.135.200) at 00:0c:29:f6:47:bb [ether] on ens160

? (172.17.0.2) at <incomplete> on docker0

? (192.168.135.178) at 00:0c:29:f3:e2:6b [ether] on ens160

Palo Alto

Use show arp all to export the ARP table.  The file format will be:

maximum of entries supported : 2500

default timeout: 1800 seconds

total ARP entries in table : 3

total ARP entries shown : 3

status: s - static, c - complete, e - expiring, i - incomplete

interface ip address hw address port status ttl

--------------------------------------------------------------------------------

ethernet1/1 192.0.2.10 00:0c:29:ac:30:19 ethernet1/1 c 295

ethernet1/2 198.51.100.10 00:0c:29:d7:67:09 ethernet1/2 c 1776

ethernet1/3 203.0.113.10 00:0c:29:b9:19:c9 ethernet1/3 c 1791

Route Tables

Route files are a special case in that they provide ruleset-specific enrichment data whereas the other auxiliary files listed above provide topology-specific enrichment data.

Route table – Cisco

The output of the command show route on Cisco devices can be imported into NP-View with associated configuration files.  For VRF’s, use the command show ip route vrf *. Cisco route files are handled a bit differently than the rest of the aux data as they are integrated upon import and are not considered as aux data when creating a view. Naming of the route files are not important as long as they are unique. The first row of the route file contains the <device name># command to link the route table with the correct device.

PCAP

IN V6.0 and later, PCAP and PCAPng files can be used to enrich the topology map. NP-View will add endpoints with IP's, MAC addresses and services to the topology map within a view. The max PCAP size is 200 MB per file.

Reference

Configuration Sanitizer

The linked .html file runs a self contained config file sanitizer in a standard web browser. The configuration sanitizer will change IP addresses within the file to mask them. This sanitizer will maintain integrity across the masked IP addresses so that we can properly test the file in the test lab. Please do not manually change the file after running through the sanitizer. To use the sanitizer file, click the link below to run in your browser.

Run from here

Known Software Issues

Below are the currently known issues in NP-View along with the available workarounds. These issues will be addressed as part of the upcoming release. If you are experiencing an issue not covered in this document, please contact Technical Support at: support@network-perception.com.

1. Typing into a field in NP-View Desktop doesn’t register any text

Reset window focus (This may not always work)

  • Alt+Tab out of the application
  • Alt+Tab back into the application

Login to NP-View Desktop via web browser

  • Open a web browser (Chrome/Edge) with NP-View still running
  • Type “localhost:8080” in the address bar to load NP-View in a browser window
Licensing

NP-View is licensed on an annual basis. The cost of the license depends on the number of configuration files imported from primary network devices (firewalls, routers, and switches).

How Licensing Works

When importing devices (manual or automated), a reminder notice is provided stating: “Importing new devices requires available licenses. Devices are activated in the order they are imported. If the total license count is exceeded, importing of additional unlicensed devices will be prohibited.

To determine the available number of devices licenses, see the summary at the bottom of Licenses and Terms.

418 of 500 licensees are allocated

Supported Devices and Connectors

The knowledge base contains a list of actively supported devices (link) and connectors (link). These lists change over time as manufacturer end of life support and as we add support for new devices. These lists are referred to in our terms of service and used to define what is in scope of the NP-View license agreement.    Network Perception reserves the right to alter this list at any time without customer notice.

When Device Licenses are Activated

Device licenses are activated when a device is first imported.  When the device limit is reached, import of additional devices (manual or automated) will be prohibited and a message will be issued in the help center and system logs.

Device licensing is permanent.  Once a license is allocated to a device it cannot be re-assigned to another device.

Palo Alto NGFW and Virtual Systems (VSYS)

Virtual systems are separate, logical firewall instances within a single physical Palo Alto Networks firewall. Rather than using multiple physical firewalls, IT departments can use a single firewall and enable virtual systems on them to independently separate traffic.

The default is vsys1. You cannot delete vsys1 because it is relevant to the internal hierarchy on the firewall; vsys1 appears even on firewall models that don’t support multiple virtual systems.

When using multiple virtual systems, if a configured vsys has an interface with access rules, NP-View will represent the vsys as a separate firewall and a device license is allocated. If a vsys has no interfaces or access rules and is used only for object management then NP-View does not display the firewall and it requires no license.

FortiGate and Virtual Domains (VDOM)

Virtual Domains (VDOMs) are used to divide a FortiGate into two or more virtual units that function independently. VDOMs can provide separate security policies and, in NAT mode, completely separate configurations for routing and VPN services for each connected network. If a VDOM has no interfaces or access rules and is used only for object management then NP-View does not display the firewall and it requires no license.

Hiding Devices

If a device is no longer required in any workspace, the Administrator can hide the device from all workspaces by unchecking the “Visible in Workspace” check box and selecting the “Submit” button.

visible in workspace

The licensed device will remain in “license and Terms” and displayed as follows:

workspace table

The data is not deleted from the workspaces. If the Administrator wishes to restore the device to all workspaces, they can by importing new data for the device or by rechecking the checkbox and clicking “Submit”.

Note: NP provided demo devices in the demo workspace are excluded from display in the license manager and device counts.

User Deleted Devices

If the user deletes a device from all workspaces, the device still remains licensed but as it has no system association will not be displayed in License and Terms.  The device can be restored in the future by importing new data for the device into any workspace.

Expired Licenses

When the license expires, workspaces for all users will be disabled along with manual data imports. A message will be displayed stating that the license has expired and to contact sales to renew. Connectors will continue to collect data and deliver the updates to workspaces and demo workspaces will continue to function.

License Downgrade

If a customer downgrades their device count, the Administrator will need to select the devices to remain active after inputting the new license key. If the Administrator does not select the devices to remain, the system will allocate the devices in the order they are used. All remaining unlicensed devices will be removed from all workspaces.

Compliance Module Downgrade

If a customer downgrades their compliance module license, all workspaces associated with that module will be disabled. The user can manually delete these workspaces.

Existing Customer Upgrades

For existing customers upgrading from a previous version of software to version 3.1.0 or later, devices that are imported and active in the license manager (check box marked) will remain licensed.  Devices that are unlicensed (check box unmarked) will be removed from all existing workspaces. If a customer needs to replace one or more devices, please contact support.

Auditors and NP Certification

Auditors and NP Certification members working project style engagements using NP-View Desktop are provided with a special feature to reset the system to its original state after an engagement so that no customer data is retained.

Adding a license to NP-View Desktop and NP-View Server

  • Step 1: Create an account on the Portal website
  • Step 2: If you don’t see an active license in the Portal home page, select “Request License” or contact support@network-perception.com
  • Step 3: Once a license key has been generated for you, make sure the format is correct. It should be a JSON structure similar to:

{
"email": "email address",
"type": "License type",
"expiration": "date",
"max_rulesets": "purchased device",
"max_users": "purchased user",
"module_np": if purchased,
"module_nerccip": if purchased,
"key": "secret key"
}

  • Step 4a: For New Installations, upon system installation, the Administrator will input the NP license key into the setup screen which will set the maximum limit on the number of devices that can be imported (manually or automated) into the system.
  • Step 4b: For existing customers, launch NP-View and select “License & terms” from the user menu (top right corner).
  • Then scroll down and select “Upgrade or renew your license” followed by “Input license manually”. You can then copy/paste the license JSON structure (including opening and closing curly brackets) into the text field area.
  • Note: the licensing function is available only to the Administrator role in NP-View Server and the must logout and re-login for the license to take affect.

HA Device Licensing

NP-View Professional server support the licensing of active / passive high availability (HA) groups for firewalls. HA Group definitions are only required if the device name of the primary and secondary devices are different. Once the active firewalls are loaded into NP-View, the HA definition file can be exported using postman or a tool of your choice using:

GET /license/ha-groups?file-export=true and a file will be downloaded.

The file export will be a text file. Column 1 will be the HA Group name and will be initially empty. Column 2 will be the firewall name.

HA Group Name, Device Name
, asaDMZ-fw1
, asaUCCtoBA1
, asaUCCtoSub-A
, asaBA
, firewallSub

The administrator will then update the text file to add unique group names as well as the name of the passive firewall. The updated file can look as follows. Devices without group names will remain as individual firewalls.

HA Group Name, Device Name
A-Group, asaDMZ-fw1
A-Group, asaDMZ-fw2
B-Group, asaUCCtoBA1
B-Group, asaUCCtoBA2
C-Group, asaUCCtoSub-A
C-Group, asaUCCtoSub-B
, asaBA
, firewallSub

Once the file is updated, the file can be posted using postman or the tool of your choice:

POST /license/ha-groups

When new firewalls are added or groups need to be redefined, the above GET / POST process can be repeated.

HA Groups will share one device license. If firewalls are ungrouped and there are not enough free device licenses, the user will be asked to remove firewalls from NP-View that are to be unlicensed and deleted from the system.

Shortcut Keys

NP-View has a series of shortcut keys to quickly access commonly used functions.  This section describes some of the frequently used shortcut keys. Note the the list of shortcut keys is available from the upper right menu or by using the “K” key

AShow the Asset inventory
BShow the Search bar help
CShow Track changes
HShow the Support center
IShow the Import data panel
KShow the list of available shortcut keys
LShow Logs
OShow the Object Groups
PShow the Connectivity Paths
QReturn to the home page
RShow the Access Rules
SSave the topology
TShow Background tasks
MShow Policy Management
VShow Custom topology views
WShow Risk & Warnings
ZShow Manage zones
SHIFTHold SHIFT key, then click and drag to draw a rectangle to select multiple nodes from the topology
CtrlHold Ctrl key, then click to select / deselect individual nodes from the topology